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Structural, architectural, contractile, or electrophysiological alterations may occur in the left atrium (LA). The concept of LA cardiopathy is supported 
by accumulating scientific evidence demonstrating that LA remodelling has become a cornerstone diagnostic and prognostic marker. The structure 
and the function of the LA and left atrial appendage (LAA), which is an integral part of the LA, are key elements for a better understanding of multiple 
clinical conditions, most notably atrial fibrillation, cardioembolism, heart failure, and mitral valve diseases. Rational use of various imaging modalities is 
key to obtain the relevant clinical information. Accordingly, this clinical consensus document from the European Association of Cardiovascular 
Imaging, in collaboration with the European Heart Rhythm Association, provides comprehensive, up-to-date, and evidence-based guidance to cardi-
ologists and cardiac imagers for the best practice of imaging LA and LAA for the diagnosis, management, and prognostication of the patients.

Keywords left atrium • left atrial appendage • imaging • atrial fibrillation • stroke • anticoagulation • echocardiography • 
cardiac magnetic resonance • cardiac computerized tomography • cardiomyopathy

Introduction
Structural, architectural, contractile, or electrophysiological alterations 
may occur in the left atrium (LA).1 The concept of LA cardiopathy is sup-
ported by accumulating scientific evidence demonstrating that LA re-
modelling has become a cornerstone diagnostic and prognostic 
marker. The structure and the function of the LA and left atrial append-
age (LAA), which is an integral part of the LA, are key elements for a bet-
ter understanding of multiple clinical conditions, most notably atrial 
fibrillation (AF), cardioembolism, heart failure (HF), and mitral valve dis-
eases. Rational use of various imaging modalities is key to obtain the rele-
vant clinical information. Accordingly, this clinical consensus document 
aims to elucidate the state-of-the-art, disease-centred multi-modality im-
aging of LA and LAA to provide practical advice for the diagnosis, man-
agement, and prognostication of the patients. Intraprocedural guidance, 
technical aspects of the procedures, or the indications of interventions 
related to LA and LAA are out of the scope of this document. The clinical 
advice is based on evidence and/or consensus of the writing group and is 
classified into several categories, as shown in Advice table 1. Advice aims 
to encourage optimal use of imaging for the benefit of the patients.

Morphology and function of LA and 
LAA
Normal morphology and function
LA consists of the main body and LAA. The main body of the LA 
consists of three components without clear anatomic demarca-
tions: (i) the venous inflow component that receives blood from 

pulmonary veins (PVs); (ii) the vestibule, the outlet part surround-
ing the mitral orifice; and (iii) the inter-atrial septum (IAS).2 Smooth 
endocardium lines the thin muscular walls of the LA body which can 
be described as superior (the roof), posterior, left lateral, septal (or 
medial), and anterior. Normal LA function has three phases: (i) PV 
forward flow (reservoir phase) during ventricular systole, (ii) PV 
forward flow during early diastole (conduit phase), and (iii) PV re-
verse flow by LA contraction during late diastole (absent in AF)3

(Figures 1 and 2).
PVs enter the LA from the posterosuperior wall with frequent ana-

tomic variations. Typically, two PVs (upper, lower) from each lung en-
ter the LA with a funnel-shaped orifice which makes it difficult to see 
the clear demarcation of the ostium. An accessory right PV and com-
mon trunk of upper and lower PVs at entry are common variations 
(see CCT).

The LAA is a finger-like extension of the anterolateral LA wall 
located in the left atrioventricular groove, with a well-defined, usually 
oval orifice (the ostium), a neck region, and a lobulated body. Based 
on the shape of the central and secondary lobes, LAA morphology 
can be classified into four types with possible overlaps: windsock 
(single central lobe), chicken wing (bended central lobe), cauliflower 
(short central lobe and several lobes leading to a distal width larger 
than the proximal part), and cactus (central lobe leading to several 
secondary lobes superior and inferiorly).3,4 The inner surface of 
the LAA is lined by the pectinate muscles with prominent 
indentations.

Remodelling and abnormal function of 
LA and LAA
The relationship between LV function and LA volume is complex and 
dynamic. Various factors such as volume and pressure overload in 
the context of mitral stenosis (MS), regurgitation, left ventricular 
(LV) systolic and/or diastolic dysfunction (DD), or AF contribute to 
the remodelling and dilatation of the LA. LA enlargement frequently 
occurs along the superoinferior axis more prominently than the an-
teroposterior axis. LA demonstrates phasic volume changes during 
cardiac cycle representing reservoir, conduit (passive emptying), and 
contractile (active emptying) functions. Abnormal LA function is typ-
ically characterized by decreased compliance and/or contractile dys-
function.5 Thickening of the wall and fibrosis may contribute to LA 
dysfunction by increasing the stiffness of the LA with or without sig-
nificant dilatation.6

LAA enlargement often accompanies LA dilatation. Diminished 
LAA contractile function is characterized by diminished emptying 
velocity and stasis. The LAA has contractile and endocrinological 
functions, while its distensibility contributes to LA pressure 
modulation.3,7

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Advice table 1 Categories of clinical advice

Strength of advice definition Symbol

Clinical advice, based on robust evidence

Clinical advice, based on uniform consensus of the writing 
group

May be appropriate, based on published evidence

May be appropriate, based on consensus within the writing 
group

Area of uncertainty
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Multi-modality imaging for LA and 
LAA
The assessment of structural, architectural (tissue characteristics), func-
tional, or electrophysiological changes associated with LA cardiopathy 
relies on the rational use of imaging modalities by appreciating their cap-
abilities and limitations to derive clinically relevant information (Table 1).

Transthoracic echocardiography
Transthoracic echocardiography (TTE) is the primary imaging modality to 
evaluate LA size and function. Since LA enlargement is asymmetrical, an-
teroposterior LA diameter measured from the M-mode or 2D parasternal 
long-axis image can significantly underestimate LA size.8,9 Yet, for some spe-
cific clinical conditions, the cut-offs for LA dilatation remain based upon an-
teroposterior linear measurements, such as in risk stratification in 
hypertrophic cardiomyopathy (HCM).10,11 LA volume quantification by 
2D echocardiography (2DE) and, preferentially, by 3D echocardiography 
(3DE) is the accurate way to evaluate LA size in clinical practice.12 The meas-
urement of LA volume by 2DE requires the acquisition of LA-focused apical 
views to maximize both the LA width and length in four- and two-chamber 
(should be similar in both views) to avoid foreshortening,10 because the LA 
and the LV are not co-axial.13 The bi-plane area–length method systemat-
ically yields larger LA volumes than the Simpson’s bi-plane disc summation 
method as it assumes an ellipsoid shape.14 The Simpson’s method is pre-
ferred over the area–length method for clinical use because of fewer geo-
metric assumptions than the area–length method.5 LA volume calculated by 
2DE correlates well with measurements obtained using 3DE, cardiac 

computed tomography (CCT), and cardiac magnetic resonance (CMR), 
despite some degree of systematic underestimation.15 Automated tools 
based on 2D speckle-tracking echocardiography (STE) have high feasibility 
and yield LA volumes (average bias 1.5 mL, limits of agreement ± 8 mL) 
comparable to the standard manual tracing of LA endocardial contours.15

By 2D echo, the upper limit of normal LA volume is defined as 34 mL/m2 

(range 16–34 mL/m2) in both men and women.10 Transthoracic 3DE has 
lower interobserver variability and higher accuracy than 2D, by avoiding 
foreshortening, geometric assumptions, and manual contour tracing er-
rors.16,17 LA volumes are significantly larger when measured by 3DE than 
by 2DE; therefore, cut-offs for detecting LA remodelling and dysfunction 
cannot be used interchangeably between the two techniques. Reference va-
lues for 3DE have been obtained from large cohorts of healthy volunteers 
(Table 2).13,18,19 Recent studies testing the latest 3DE software tools dedi-
cated for LA quantification showed that the measurement bias against CMR 
data is minimal and clinically negligible.15,20 Fully automated 3D LA volume 
quantification using dedicated software packages also enables single-beat ac-
quisitions with sufficient temporal resolution for reliable quantification of 
the LA even in patients with irregular rhythms.21

Maximal LA volume has been the most clinically used parameter; yet, 
there is an important body of evidence supporting the role of phasic LA 
volumes (particularly LA minimal volume) and function. LA function may 
demonstrate alterations prior to volume changes.12 The same dedicated 
2DE views used for maximal LA volume calculation can be employed to 
obtain LA phasic function parameters. From the LA volumes, the total 
emptying volume (EV) is calculated as (LAVmax − LAVmin), the passive 
EV as (LAVmax − LAVpreA), and the active EV as (LAVpreA − LAVmin). 
Total emptying fraction (LAEF); (total EV / LAVmax), passive LAEF; 

Figure 1 Phasic changes of LA: pressure, volume, and pressure/volume curves.

The role of multi-modality imaging for the assessment of LA and LAA                                                                                                               387
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/26/3/385/7954288 by N

ew
 York U

niversity Libraries user on 13 April 2025



(passive EV / LAVmax), and active LAEF; (active EV / LAVpreA) are calcu-
lated as indices of reservoir, conduit, and contractile function, respective-
ly (Figure 3).13 Because indexing LA size to body surface area accounts for 
gender difference, only the indexed value should be reported.22

Because of manual endocardial border tracing at three different time 
points of the cardiac cycle, assessment of LA phasic function by 2DE 
is time-consuming and prone to errors. LA function can be measured faster 
and automatedly, without geometric assumptions by using dedicated soft-
ware packages for LA volume quantitation from 3DE datasets (Figure 4).13

The limitations of 3DE at present include low spatial resolution and the need 

for dedicated equipment and training. There is paucity of data regarding its 
incremental prognostic value compared to 2DE.

Mitral inflow velocity during atrial contraction (A wave) and late dia-
stolic mitral annular velocity (a′) are Doppler metrics of LA function. 
Blunted or absent A and a′ waves during sinus rhythm are typical find-
ings of atrial stunning. Of note, these parameters are load- and angle- 
dependent and present during sinus rhythm only. Speckle-tracking 
strain has been a highly sought-after technique for LA function quanti-
fication. It is semi-automated, less angle-dependent, and less affected 
by artefacts than tissue Doppler-based measurements. LA strain 

Figure 2 Translation of LA phasic function into imaging. Note the interaction between mitral annular descent by LV contraction, LA reservoir, atrial 
contraction, and PV flow.
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assessment requires dedicated, focused image acquisitions to optimize 
lateral and temporal resolution. The use of dedicated software with an 
automated LA wall detection algorithm improves measurement repro-
ducibility. The region of interest (ROI) should fit in the thin wall, accur-
ately track the motion of the mitral annulus, and avoid the strong signals 
of the adjacent and stationary pericardial tissue, which—if included— 
may underestimate strain values.23 LA function parameters [reservoir 
(LASr), conduit, and contraction strain] are computed as LA time– 
strain curves over the cardiac cycle (Figure 5). Analysis, reporting, and 
interpretation should follow the EACVI/ASE/Industry Taskforce con-
sensus statement on LA strain analysis.24 The reference timing of 
zero strain should be set at end-diastole (R–R gating). The alternative 
method is when zero strain is set at the onset of atrial contraction (P– 
P gating). Importantly, however, the R–R gating is less prone to errors 

than the P–P gating and can be used during AF. Yet, high reproducibil-
ity (intraclass correlation 0.93 and 0.90, respectively) of both methods 
was shown in the MASCOT-HIT study.25 Strain rate during ventricu-
lar systole, early diastole, and late diastole correspond to reservoir, 
conduit, and contractile function, irrespective of the R–R or P–P gat-
ing. Of note, LA load impacts volume and strain measurements re-
gardless of the method used. Normal LA phasic strain values were 
reported in the healthy population from a meta-analysis including 
40 studies in 2017 and from the NORRE study in 201819,26 (Table 3).

Additionally, reference ranges of LA phasic function by strain were 
published from 1329 healthy participants in the HUNT study (analyses 
performed by General Electric HealthCare EchoPAC system). 
Accordingly, bi-plane mean ±2SD reference values are as follows, in fe-
males and males, respectively: %LASr, 33.2 (17.2–49.2), 32.7 (16.0–49.3); 
%LA conduit strain, −17.0 (−30.8 to −3.3), −15.7 (−29.1 to −2.3); %LA 
contraction strain, −16.2 (−25.4 to −7.0), −17.0 (−26.9 to −7.0).27

Combining early diastolic mitral inflow (E) and annulus (e′) velocities 
with LASr enables obtaining an index for the estimation of LA stiffness 
by the formula: E/e′/LASr.28

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Reference echocardiographic values of LA 
volumes13

3D 2D

Women Men Overall Overall

LAVImax (mL/m2) 31 (27–45) 31 (19–52) 32 (28–36) 24 (21–28)

LAVImin (mL/m2) 10 (5–18) 11 (4–21) 10 (8–12) 8 (6–10)

LAVIpreA (mL/m2) 18 (10–30) 18 (9–32) 18 (14–21) 14 (12–18)

Total LAEF (%) 68 (53–79) 66 (51–80) 67 (63–71) 67 (62–74)

Active LAEF (%) 40 (18–61) 41 (20–60) 41 (35–48) 46 (39–53)

Passive LAEF (%) 45 (22–60) 43 (23–61) 44 (38–49) 41 (32–48)

Values are given as median (Interquartile range). Abbreviations: LAVI, left atrial volume 
index; max, maximum; min, minimum.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Goal-directed multi-modality imaging for LA 
and LAA

TTE TOE ICE CCT CMR PET

LA volume +++a + + +++ +++ -

LA morphology +++a - + +++ +++ -

LA phasic function +++a - - ++ +++ -

LA strain +++ - - + ++ -

LAA morphology - ++ ++ +++ ++ -

LAA function - +++ + - + -

Pulmonary vein flow ++ +++ - - - -

Pulmonary vein pattern - ++ ++ +++ +++ -

LAA thrombus - +++ +++ +++ ++ -

LA fibrosis - - - - ++ ++b

Peri-atrial epicardial fat +c - - +++ +++ -

Real-time image 

integration with EAM

- - - +++ +++ -

Inflammation - - - - - ++d

Abbreviations: CCT, cardiac computerized tomography; CMR, cardiac magnetic 
resonance; EAM, electroanatomic mapping; ICE, intracardiac echocardiography; PET, 
positron emission tomography; TTE, transthoracic echocardiography; TOE, 
transthoracic echocardiography.
aIdeally by 3DE.
bPET with fibroblast activating protein inhibitors.
cOnly thickness.
dPET with fluorodeoxyglucose.

Figure 3 Phasic volumes by 3DE.

Advice table 2 Use of TTE

Evaluation of the LA by TTE requires the acquisition of 
atrial-focused views.

It is advised to assess LA size by volume (bi-plane 2D or 3D) 

quantification and to use the same tool for intra- and 
inter-individual comparisons.

LA phasic volumes and strain by TTE are the mainstay of 
assessing LA function.

Volumetric cut-offs obtained from different echo techniques 

cannot be used interchangeably.
R–R gating is advised for the assessment of LA phasic function by 

2D strain.
LA size estimation should not be limited to M-mode or 2D linear 

measurements.
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Transoesophageal echocardiography
Transoesophageal echocardiography (TOE) is well suited to image 
the LA and the LAA, given their proximity to the oesophagus. 
However, LA sizing is performed by TTE rather than TOE, because 
the ultrasound scan sector cannot entirely encompass LA on TOE. 
Exclusion of thrombi, search of cardioembolic sources, characteriza-
tion of the PVs before AF ablation, procedural planning, and guid-
ance for LAA occlusion are the most common indications for 
imaging LA and LAA by TOE.29 Although TOE is semi-invasive, it 
is safe in renal insufficiency. It provides adequate image quality in 
AF and offers information about associated cardiac pathologies 
and haemodynamics.

Technical considerations
Multiple TOE planes are used to explore the LA and LAA from the mid- 
oesophageal view. With 2D probes, LAA can be easily visualized be-
tween 45 and 90° with counterclockwise rotation and gentle anteflex-
ion of the transducer. Once the LAA is visualized, it is centralized on the 
screen, and a thorough evaluation is performed by sweeping from 0 to 
135°. However, 3D probes allow visualization of bi- or tri-plane simul-
taneously which facilitates the sweep process (Figure 6). A 3D zoom ac-
quisition with a wide sector (since high temporal resolution is not 
specifically required for atrial structures) and excluding the atrial roof 
in the nearfield (avoiding obstruction of the view) is generally per-
formed for a live assessment and further cropping. From the 3D 
zoom acquisition, a live ‘en face’ view of the LAA orifice can be ob-
tained. Further perpendicular cropping and orientation of the 3D data-
set enable the characterization of the LAA morphology. Photo-realistic 
rendering with light adjustments or CCT-like rendering with improved 
transparency (Glass) has also been recently introduced to improve the 
qualitative assessment by highlighting the tissue–blood interface 
(Figure 7).30

The TOE also provides anatomic and functional information about 
PVs. Notably, TOE underestimates PV dimensions, especially for the 
inferior veins.31 The left upper PV is visualized in its long axis adjacent 
to LAA with further counterclockwise rotation between 45 and 110°. 
Visualization of the left lower PV requires slight vertical manipulation 
or further angulation to 120°. The right upper PV can be visualized 
after clockwise rotation of the probe with anteflexion from either 
0, 45, or 120–135° (on the left and right side of the screen, respect-
ively) adjacent to the IAS and superior vena cava. The right lower PV is 
the most difficult to align with the Doppler beam and is best seen from 
the extreme clockwise rotation of the probe at 0° without anteflexion 
immediately inferior to the right upper PV. PV Doppler interrogation 
shows systolic (S), diastolic (D), and atrial contraction (A) waves dur-
ing sinus rhythm (Figure 8A–D). PV flow velocities are relevant for the 
assessment of LA pressure, mitral regurgitation (MR) severity, and PV 
stenosis after PV isolation. The left and right PV orifices are widely se-
parated, and the pyramidal 3D data set cannot include them all in a 
single image. From the best 2D views obtained, the left and right PV 
orifices can be seen 2 by 2 by 3D zoom acquisition from an optimal 
orthogonal display, and rotation of the dataset as shown in figure 
(Figure 8E and F ). The left PVs are adjacent to LAA, and the right 
PVs run adjacent to the IAS.

LAA function
Flow in the LAA is visualized using colour Doppler with a low 
Nyquist limit, and flow velocities are measured by pulsed-wave 
Doppler. Four phases have been described: emptying (contraction) 
velocity, filling velocity, a biphasic systolic reflection wave, and an 
early diastolic emptying wave29 (Figure 9). Emptying velocity ranges 
from 63 ± 29 to 83 ± 25 cm/s and filling velocities range from 54  
± 17 to 61 ± 18 cm/s. Velocities can decrease because of high LA 

pressure. A sawtooth pattern with low velocities is observed during 
AF. Velocities <40 cm/s in sinus rhythm are associated with an in-
creased risk of stroke.32

CMR
CMR allows a comprehensive 3D evaluation of LA anatomy, 
structure, and function. Its potential to reveal the extent of atrial 
fibrosis by late gadolinium hyperenhancement (LGE) imaging is an 
advantage.33

Assessment of morphology
CMR steady-state free-precession (SSFP) cine images provide excellent 
blood-endocardium and epicardium-fat contrast, allowing good delin-
eation of the atrial endocardial borders and LA size. This allows precise 
measurement of LA volumes, either using a bi-plane area–length meth-
od from two- and four-chamber cine images (Figure 10A) or using the 
Simpson’s disc summation method on a stack of adjacent short-axis 
images from the atrioventricular ring to the roof of the LA. Since LV 
and LA are not co-axial, the LA volumes derived from the bi-plane 
area–length method may underestimate the true LA size because the 
long-axis cine images are normally aligned to the LV axis during 

Figure 4 3D automated LA volume quantification. Note that the 
LA long axis is adjusted.

Advice table 3 For the use of TOE

Multiplanar imaging with or without 3D is indispensable for 
complete visualization of LAA morphology.

TOE is the preferred technique for the assessment of LAA, 

function, and thrombus.
TOE is the preferred technique for the assessment of PV flow.

The use of TOE is inappropriate for the assessment of LA size or 
volume.

390                                                                                                                                                                                             L.E. Sade et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/26/3/385/7954288 by N

ew
 York U

niversity Libraries user on 13 April 2025



acquisition. The Simpson’s method is more precise and overcomes the 
geometric assumption and limitations of the area–length method; how-
ever, it requires additional scanning time to acquire the LA short-axis 
stack. The reference values obtained from the two- and four-chamber 
cine images are given in Table 4.34

More precise evaluation of atrial morphology, especially of the LAA 
and PV, can be achieved by using 3D angiographic (MRA) images 
(Figure 10C) which can be acquired either using free breathing of navi-
gator gated MRA after gadolinium injection or using non-contrast ba-
lanced SSFP MRA.35 Like CCT, these images can be merged with 3D 
electro-anatomical maps using landmarks or surface registration for 
AF ablation36 (Figure 10E). Evaluation of the anatomy of the PV pre- 
ablation and PV stenosis post-ablation is also feasible with CMR; how-
ever, less data is available as compared to CCT.37

CMR allows understanding of tissue characteristics and detection of 
atrial fibrosis by high-resolution 3D LGE imaging38 (Figure 10E). LGE on 
the LA wall has been detected in several conditions such as AF,39,40 mi-
tral valve diseases,41 and cardiac amyloidosis (CA).42 Yet, assessment of 
atrial LGE is performed visually at best by experienced centres without 
a consensus for quantification and is not possible if the image quality is 
suboptimal. Variability among observers has been a significant disadvan-
tage.38 Further work is required to standardize atrial LGE imaging to en-
able its widespread clinical use.

Cine and 3D MRA allow also the assessment of LAA size and morph-
ology and measurement of its ostial diameter and depth. For assessing 
LAA thrombus, CMR with inversion time myocardial delayed enhance-
ment acquisition has the highest accuracy (99.4%) followed by 
contrast-enhanced (97.6%) and cine CMR 93.9%) tools.43 Hence, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 3 Reference values of LA phasic strain (NORRE study)19

All ages Age 20–40 years Age 40–60 years Age >60 years

LAS reservoir 42.5 (36.1–48.0) 46.8 (42.3–52.4) 40.9 (35.4–46.1) 35.5 (30.9–41.9)

LAS contraction −16.3 (−12.9 to −19.5) −15.6 (−11.9 to −19.0) −16.3 (−13.2 to −19.6) −16.8 (−13.6 to −21.4)

LAS conduit −25.7 (−20.4 to −31.8) −30.6 (−26.8 to −36.5) −24.1 (−19.7 to −29.3) −18.6 (−14.7 to −22.6)

Values are given as median (interquartile range).

Figure 5 Image acquisition and computation of LA strain.
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CMR is an alternative to TOE or CCT in centres having adequate ex-
perience in LAA image acquisition and interpretation, depending on 
the resources.

Finally, CMR (T1-weighted or cine SSFP images) can accurately 
quantify the volume and area of pericardial adipose tissue.44 A recent 

meta-analysis showed that LA epicardial adipose tissue (EAT) thick-
ness was a strong parameter associated with the risk of AF recur-
rences after catheter ablation.45

CMR may suffer from artefacts in case of AF with high heart rate and 
devices (particularly intracardiac defibrillator).

Figure 6 Multiplane images of the LAA showing different morphologies.

Figure 7 (A) Zoom-mode acquisition and multiplane display of LAA morphology by cropping and re-orienting the 3D data set with 3D photo- 
realistic rendering. (B) Glass view of the LAA.
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Assessment of function
LA function can be assessed with CMR by computing LAEF 
from measurements of maximum and minimum volumes and 
phasic LA volume–time curves from the cine images (Figure 10B) 
(Table 4).34,46,47 Recent technology enabled LA strain quantification 
by automated feature tracking methods from two- and four-chamber 
cine images (Figure 10D). A recent meta-analysis showed that feature 
tracking vendor matters for the heterogeneity of measurements ra-
ther than the CMR vendor, sex, and age.48 The pooled mean values of 
LA phasic strain are presented in Table 5. There are promising ad-
vances in measuring peak velocity and vorticity by 4D flow imaging 
paving the way for the assessment of atrial haemodynamics46,49

(Figure 10F).

CCT
Due to its excellent spatial resolution, CCT plays a pivotal role in 
defining the morphology of the LA, LAA, PVs, and function of the 
LA and in guiding electro-anatomical mapping. For evaluating LA, 
PVs, LAA morphology, and epicardial fat, a single arterial phase ac-
quisition with ≥64-slice CCT with ECG triggering is required. 
Prospective ECG triggering is used in patients with sinus rhythm 
and low heart rate whereas retrospective ECG triggering is appro-
priate in patients with high and non-stable heart rates.50 In patients 
who are in AF during the scan, acquisition is more challenging, but 
the introduction of more recent technology allows adequate image 
quality even during AF.51,52 Figure 11 shows a typical 3D LA recon-
struction with CCT. An additional delayed scan after contrast in-
jection is mandatory for ruling out LAA thrombus.53 While the 
time to delayed images varied in studies, most were acquired 
30–180 s after the initial images.

Assessment of morphology
CCT has a higher spatial resolution than CMR and is a well-established 
technique to evaluate LA and LAA morphology and volume and PV pat-
terns, to rule out LAA thrombus, and to detect peri-atrial adipose 
tissue.

CCT systematically detects higher LA volumes compared to 2DE 
and CMR because of several reasons.54 First, due to higher tem-
poral resolution, the proper image reconstruction windows for 

Figure 9 Normal quadriphasic wave pattern of LAA flow. Early diastolic emptying (asterisk), systolic reflection (circles) waves.

Figure 8 PVs by TOE. (A) Left upper PV, 60°, colour Doppler; 
(B) left upper PV, pulsed-wave Doppler; (C ) left upper and lower 
PVs, 120°, colour Doppler; (D) right upper and lower PVs, 0° clock-
wise rotation; (E, F ) the left and right PVs, 3D-rendered image.
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accurate measurement of LA volume could be more achievable 
with 2D echo or CMR rather than CCT. Second, image noise dur-
ing systolic phase may contribute to the overestimation of LA vol-
ume by CCT. Third, bolus injection of high-volume iodine contrast 
agent at high-rate infusion or drugs usually used for CCT scan such 
as β-blockers could modify LA morphology transiently, partly by in-
corporating more PV volume. Table 6 represents the normal refer-
ence values of LA volumes by gender from 569 healthy subjects 
undergoing 320-detector CCT as a part of the Copenhagen 
General Population Study.55

CCT is now recognized as a good alternative for detecting LAA 
thrombus. Romero et al.53 described a diagnostic accuracy of 94% 

of CCT vs. TOE to rule out LAA thrombus with 41% positive predict-
ive value, because incomplete opacification of the LAA is common in 
patients with AF mimicking thrombus in acute phase scans. The posi-
tive predictive value increased to 92% with an overall diagnostic accur-
acy of 99% if delayed contrast imaging (venous phase) is added to 
arterial phase acquisition (Figure 12). CCT also clearly differentiates 
LAA morphologies as cactus, chicken wing, windsock, or cauliflower 
pattern.56

Contrast-enhanced CCT has potential for tissue characterization. 
Distribution of hypoattenuation is one way by which CT can identify 
myocardial fibrosis.57 Also, new methods to perform extracellular vol-
ume quantification using CT are emerging.58 CCT is the preferred 

Figure 10 LA by CMR. (A) Area–length method from two- and four-chamber cine images. (B) Computation of reservoir, conduit, and contractile 
function and emptying fraction. (C ) 3D anatomy by contrast or non-contrast-enhanced magnetic resonance angiography (MRA). (D) LA strain and strain 
rate. (E) LA fibrosis (arrows) by LGE and the computation of 3D maps of atrial fibrosis. (F ) The myocardial blood flow distribution and velocity by 4D 
phase contrast.
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method to assess the PVs, although no differences are described be-
tween CCT and CMR in terms of diagnostic accuracy of PV pattern51,54

(Figure 13).
CCT is accurate and reproducible to assess epicardial fat tissue 

(EFT) by either manual or semi-automated volume quantification. 
This latter algorithm defines all structures with contrast attenuation 
ranging between −195 and −45 HU as adipose tissue.59 A volumetric 
quantification is advised rather than area measurements.59 CCT also 
allows visualization of the peri-atrial anatomy for safe guidance of pro-
cedures and helps to avoid phrenic nerve injury or atrio-oesophageal 
fistula.60,61

Assessment of function
With ECG-triggered acquisition, functional series can be obtained in 
order to perform LA strain quantification. However, currently, data 
regarding LA strain assessment using functional CCT images are 
scarce. LA strain is usually obtained by tracing endocardial LA borders 
on multiple apical two-chamber views excluding LAA and PVs. 
Szilveszter et al.62 demonstrated excellent intra-observer reproduci-
bility for this approach with an intraclass correlation of 0.95, a correl-
ation coefficient of 0.87, and 5.6 points of underestimation as 
compared to 2D echo. Yet, relatively low temporal resolution and ra-
diation exposure limit the use of CCT for LA strain quantification in 
clinical practice.

Nuclear imaging
Molecular positron emission tomography (PET) imaging as a tool to as-
sess atrial inflammation and fibrosis is in early stages. Increased atrial 
18F-FDG uptake has been shown in patients with AF and in those 
with sarcoidosis as a predictor of subsequent AF.63,64 More recently, 
68Ga-fibroblast activation protein inhibitor (FAPI-PET) was used to de-
tect increased fibroblast activation in the atria of patients with AF or 
after PV isolation.65,66 Atrial activity is rarely reported but seems to 
be clinically relevant. Oncologic patients frequently have atrial uptake 
on their PET/CT which is also linked to the risk of AF and pro- 
thrombotic state with cardio-oncologic consequences.64 Further inves-
tigations are awaited to consolidate clinical implications.
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Table 4 Reference values of LA by CMR34

Men Women

Mean ± SD Lower–upper limits Mean ± SD Lower–upper limits

Bi-plane LAVImax (mL/m2) 38 ± 11 17–59 39 ± 11 17–61

Bi-plane LAVImin (mL/m2) 14 ± 5 3–24 13 ± 5 4–23

Bi-plane LA EF (%) 62 ± 8 46–77 63 ± 8 48–78

Simpson LAVImax (mL/m2) 41 ± 8 24–57 44 ± 8 28–60

Simpson LAVImin (mL/m2) 19 ± 5 9–28 19 ± 4 11–27

Simpson LA EF (%) 54 ± 8 38–70 57 ± 6 45–69

Abbreviation: SD, standard deviation.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 5 LA strain reference values by CMR feature 
tracking48

Mean 95% CI

LAS reservoir % 34.9 29.6–40.2

LAS conduit % −21.3 −16.6 to −26.1

LAS contraction % −14.3 −11.8 to −16.8

Figure 11 LAA. (A) Axial, B) sagittal oblique, C ) coronal oblique 
views, and D) 3D volume-rendered image.

Advice table 4 Use of CMR and CT

CMR is the gold standard for the quantification of peri-atrial 
adipose tissue volume.

CCT is advised for assessing the anatomy of PVs.

CMR and CCT are alternatives to echocardiography for the 

assessment of LA, LAA morphology, volume, and thrombus.
Using the same imaging modality is strongly advised for intra- and 

inter-subject comparisons.
CMR can be used as an alternative to CCT for assessing the 

anatomy of PVs.
CMR with automated feature tracking can be used for LA strain 

quantification.
CMR with LGE can be used for visualization of LA wall fibrosis 

with good-quality imaging, by the experts.
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Integration of LA imaging into 
diagnostic and prognostic 
evaluation
HF
Asymptomatic HF
The development of overt HF is preceded by HF risk factors with or 
without abnormal cardiac structure and function.67 While LV structural 
(e.g. LV hypertrophy) or functional parameters [reduced EF or global 
longitudinal strain (GLS)] are classically used to define HF regardless 

of symptoms, evidence of atriopathy also seems to be a marker of 
HF. Thus, LA size (maximum and minimum volume) and function 
(LAEF, LASr, and LASct) might likely be incorporated into the definition 
of HF as an objective evidence of functional and structural abnormality. 
For example, in 1802 participants in the Dallas Heart Study, increasing 
left atrial volume index (LAVI) and decreasing LAEF were associated 
with hypertension and elevated brain natriuretic peptide (BNP), LAVI 
was most strongly associated with LVEDVi, and LAEF was associated 
with left ventricular ejection fraction (LVEF) and morphology. 
Reduced LAEF was independently associated with 8-year mortality in 
the general population and provided incremental prognostic utility to 
clinical risk factors, LV mass, and LVEF.68 The availability of LA strain 
has made the detection of cardiopathy more feasible. In an analysis of 
112 subjects with incident HF and 112 case–controls from the 
Multi-Ethnic Study of Atherosclerosis (MESA), atrial changes were pre-
sent in CMR images obtained 8 years previously despite asymptomatic 
status. Specifically, subjects who developed HF had larger baseline LA 
volume index (40 ± 13 vs. 33 ± 10 mm3/m2, P < 0.001) and lower 
peak longitudinal LA strain (25 ± 11 vs. 38 ± 16%, P < 0.001) years be-
fore. In fact, LASr was associated with incident HF independent of clin-
ical risk factors, LV mass, and natriuretic peptides.69

HF with preserved ejection fraction and DD
During ventricular diastole, LA is exposed to the pressure of LV. With 
LV DD, LA pressure rises to maintain adequate LV filling, which in turn 
leads to dilatation and stretching of the LA wall. LAVI >34 mL/m2 is one 
of the criteria for the diagnosis of DD.70 However, LAVI has limitations 
during the early phases of DD.71 In addition, LAVI increases with age 
and is modified by the percentage of age-predicted O2 consumption 
(cardiorespiratory fitness).72 Assessment of LASr in addition to the 
European Association of Cardiovascular Imaging (EACVI)/American 
Society of Echocardiography (ASE) criteria has been proposed for im-
proving the diagnostic precision of the DD algorithm by decreasing the 
indeterminate cases.73 LASr, unlike traditional parameters, deteriorates 
progressively with the severity of DD. Thresholds of LASr were pro-
posed to separate normal from Grade 1 to 3 (35%), Grade 1 from 2 
to 3 (24%), and Grade 3 from 1 to 2 DD (19%), respectively.74

While LAVI takes place in the algorithm of estimating LV filling pres-
sure, LASr does not.70,75 However, replacing a missing parameter in this 
algorithm with LASr (cut-off <18%) has been shown to facilitate the de-
tection of increased filling pressure.75 LASr is more sensitive in detect-
ing elevated filling pressures even when LAVI is normal during sinus 
rhythm.73,76 LASr <18% is associated with increased LV filling pressure 
(PCWP ≥15 mmHg) particularly if LVEF is <50%.77

Enlarged LAVI, reduced LASr, and GLS together with LV hypertrophy 
are supportive for the diagnosis of HF with preserved ejection fraction 
(HFpEF).67,75 In the absence of a specific aetiology, recognition of DD 
and estimation of LV filling pressure are crucial for the diagnosis of 
HFpEF. Of note, the PARAMOUNT trial showed that LA phasic function 
and LASr are decreased independently of LAVI and the history of AF in 
HFpEF.78 In the substudy of TOPCAT, LASr was associated with HF hos-
pitalization and related to both LV systolic and diastolic function.79

Although LASr is not cited among the diagnostic criteria of HFpEF, 
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Table 6 Reference values (mean and 2.5–97.5%) for LAVI by CCT55

Age group Men Women

40–50 50–60 60–70 >70 40–50 50–60 60–70 >70

LAVImax (mL/m2) 76 (47–108) 81 (53–118) 83 (44–114) 92 (67–154) 63 (43–91) 67 (49–96) 71 (49–102) 78 (55–124)

LAVImin (mL/m2) 38 (25–54) 41 (27–58) 43 (21–63) 49 (36–74) 36 (25–50) 39 (28–54) 42 (30–56) 48 (38–77)

Figure 12 LAA thrombus. Arterial phase CCT scans (A, axial; B, ob-
lique parasagittal three-chamber views) with endocavitary filling defect 
at the apex of the LAA, persisting into the late phase of imaging, 15 s 
later (C–D), consistent with thrombus (arrows).

Figure 13 3D volume-rendered CT images of the LA. (left) Normal 
anatomy: four PVs draining into the superior posterior surface of LA. 
(right) A common anatomical variant characterized by the two left PVs 
draining into a common trunk.
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abnormal LASr is associated with dyspnoea, NYHA class, and HF hospi-
talization and is a useful adjunct to the evaluation of DD and estimation of 
LV filling pressure algorithms in indeterminate cases.73,79

HF with mildly reduced and reduced EF
LA enlargement in HF with mildly reduced EF (HFmrEF) and HF with 
reduced EF (HFrEF) is associated with adverse cardiovascular events.80

However, the impact of LASr on outcomes, in these patients, has been 
less studied. The best relationship between LASr and filling pressure is 
found in patients with reduced systolic function.77,81 HFmrEF (EF = 41– 
49%) by definition needs the presence of symptoms and/or signs of HF. 
The presence of increased LAVI, elevated natriuretic peptides, and evi-
dence of structural heart disease make the diagnosis more likely, but are 
not mandatory for diagnosis.82

Ischemic heart disease
Patients with ischaemic heart disease or after myocardial infarction (MI) 
make up the largest Stage B HF group. Accordingly, LA function and re-
modelling could be a marker of abnormal cardiac function with a diag-
nostic value. Additionally, LA function has been shown to predict HF 
hospitalizations after MI83 and was incremental to LAVI.84 A recent 
large CMR study showed that LAEF is independently associated with in-
creased mortality in patients with ischaemic cardiopathy (LVEF <50%) 
even after adjusting for infarct size and MR severity.85 LASr, assessed with-
in 48 h of acute MI, was associated with the composite outcome of death 
and HF86 and provided incremental value to LAVI in patients treated with 
percutaneous coronary interventions.87 Data from multicentre prospect-
ive CMR studies [AIDA STEMI (NCT00712101) and TATORT NSTEMI 
(NCT01612312)] also showed that LASr (cut-off of 18.8%) is an inde-
pendent predictor of outcome and incremental to LVEF, GLS, microvascu-
lar obstruction, and infarct size.88 LAVI predicted morbidity and mortality 
after acute MI as well.89,90 However, LA dilatation reflects a chronic pro-
cess therefore may not be an ideal marker shortly after an acute MI in con-
trast to the indices of LA function that correlate more strongly to LV filling 
pressure after acute MI. Additionally, reduced LASr was shown to predict 
an increased risk of new-onset AF after coronary artery bypass graft 
surgery.91

Athlete’s heart
LA dilatation is triggered by the increase in preload during athletic train-
ing as an adaptive mechanism.92,93 Age, type of sport, and duration and 
intensity of training influence the degree of atrial remodelling. LAVI is 
associated with higher cardiorespiratory fitness and maximal oxygen 
consumption during exercise in both men and women.94 A systematic 
review including 7189 elite athletes and 1375 controls described in-
creased LAVI in athletes with an upper limit of normal 35.8 mL/m2 

compared to <34 mL/m2 in the general population.95 Spencer et al.96

reported LAVI exceeding 48 mL/m2 in 40% of male and 32% of female 

athletes. Importantly, there is a balanced adaptation with global remod-
elling in both atria and ventricles. Despite LA enlargement, E/e′ remains 
normal by means of increased LA and LV compliances and bradycardia 
and maintains LA pressure within normal range.96 Conflicting evidence 
from relatively small cohorts exists about reversal of LA dilation with 
detraining.93,97 In athletes, LASr is either preserved or mildly reduced 
(39%; 95% CI, 38–41%) compared to untrained controls,92 and LA ac-
tive emptying is lower in athletes (17%; 95% CI, 16–19%). Athletic atrial 
remodelling seems to be dependent on the intensity of training.98,99

Adaptation of phasic volume changes during exercise enables distinc-
tion between physiological and pathological atrial remodelling.100

Moderate exercise appears to protect against AF, whereas strenuous 
exercise increases the risk of AF which is postulated to be mediated 
by atrial dilatation, vagal tone, exercise-related adrenergic stimulation, 
and augmented LA pressure during exercise.101,102 Increasing intensity 
and duration of athletic training leads to atrial enlargement and reduced 
atrial strain; only subtle further changes occur with AF. Therefore, pre-
diction of AF in athletes by LA volume and strain is challenging as evi-
denced by conflicting results.103–105

HCM
LA remodelling is promoted by impaired LV filling and raised LA filling 
pressures in HCM. HCM may also cause direct LA cardiopathy as 

Figure 14 Atrial electromechanical dissociation in CA. Poor LA strain, absent LA contraction strain, and A wave, despite sinus rhythm.

Figure 15 Diffuse LGE on the LA wall in CA.
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evidenced by reduced passive and active LA emptying in the preclinical 
stage with positive genotype but without evident LV hypertrophy.106

LA imaging and identification of AF risk are important because HCM 
is associated with a five-fold higher risk of AF incidence as compared 
with the general population and an increased rate of cardioembo-
lism.107 Increased LA volume, reduced atrial EF, and reduced LASr 
have been found to predict incident AF in the HCM populations.108,109

A high burden of atrial LGE on CMR was reported in patients with 
HCM and AF.110 Adverse LA remodelling in HCM has been shown 
to be a marker of poor outcome.111,112 LA diameter is a component 
of the sudden cardiac death risk scoring system in HCM patients as va-
lidated in 2014.113 The utility of more novel LA metrics has not been 
tested in identifying sudden cardiac death risk in large cohorts. 
Treatment of HCM is associated with LA structural and functional 
changes. Hegde et al.114 documented reductions in LA volumes and im-
provement in LV diastolic function and natriuretic peptide levels after 
treatment with mavacamten. Finally, regarding the controversy of exer-
cise training in HCM, a similar LAVI increase was observed with com-
petitive exercise in athletes with and without HCM.115

CA
Both primary LA cardiopathy from amyloid accumulation-mediated 
damage and secondary involvement due to increased LV filling pressure, 
MR, and AF occur in CA.116 Amyloid infiltration typically increases the 
thickness and stiffness of the atrial wall and IAS preventing excessive 
dilatation. Consequently, deformation-based parameters become 
more relevant than LA size for risk stratification in this population. 
Poor LASr and poor or absent LASct are typical findings in CA.117

The increase in LA stiffness can be estimated by the ratio E/e′/LASr.28

During ventricular systole, the LA acts as a non-distensible (stiff) reser-
voir causing increased LA pressures and reducing the energy stored in 
the walls which affects the conduit phase. Finally, a lack of atrial mech-
anical contraction can be observed in a proportion of the patients 

despite sinus rhythm, i.e. atrial electromechanical dissociation as a dis-
tinct feature and poor feature and poor prognosticator in CA 
(Figure 14).116 LA strain is independently associated with high throm-
botic risk in patients with CA.118 LGE due to amyloid deposition or fi-
brosis in the LA wall can be detected by CMR42 (Figure 15) and is 

Figure 16 LA strain in AF. Note the lack of contraction; only the reservoir strain can be quantified which is significantly reduced.

Figure 17 Ultrasound contrast for LAA opacification: (A) artefact 
mimicking thrombus, washing out with contrast, (B) thrombus produ-
cing a filling defect with contrast.

398                                                                                                                                                                                             L.E. Sade et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/26/3/385/7954288 by N

ew
 York U

niversity Libraries user on 13 April 2025



associated with reduced LA function.119–122 LA cardiopathy holds diag-
nostic122 and prognostic significance for all-cause mortality and in-
creased risk of AF development and cardioembolic events in CA.118,122

MR
LA dilation is an adaptive response to volume overload in patients with 
progressive MR.123,124 Furthermore, enlarged LAVI identifies indivi-
duals at increased risk of mortality, independent of the severity of 
MR or AF.125 The 2021 European Society of Cardiology (ESC)/ 
European Association of Cardiothoracic Surgery (EACTS) Guidelines 
for the management of valvular heart diseases recommend early surgi-
cal mitral valve repair in low-risk asymptomatic patients with severe pri-
mary MR when LAVI ≥60 mL/m2 or LA diameter ≥55 mm.123 In 
addition to LA dilation, reduced LASr has been independently asso-
ciated with all-cause mortality in patients with significant primary and 
secondary MR and has shown incremental prognostic value over 
LAVI and LV GLS.126,127 LA fibrosis that occurs in the process of MR 
also reduces LASr.128 The impact of mitral valve repair on the revers-
ibility of LA fibrosis is currently investigated by LGE CMR 
(NCT05345730).41 In atrial functional MR, which occurs most com-
monly in the setting of chronic HFpEF or AF, LA dilatation is deemed 
to be the main driver of MR through annular dilatation.129 LA reverse 
remodelling after mitral valve repair is a favourable prognosticator 

but depends on several factors including pre-operative LAVI, MR sever-
ity, post-operative trans-mitral pressure gradient,130 and intrinsic atrial 
cardiopathy. Recently, bi-leaflet prolapse was found to be associated 
with reduced LA function regardless of MR severity, suggesting a pri-
mary cardiopathy in these patients.131

MS
The pressure overload in MS promotes excessive dilatation of the LA 
with decreasing deformability, compliance, and contraction. In rheum-
atic MS, rheumatic atrial cardiopathy further exacerbates LA enlarge-
ment leading to one of the largest LAs observed in humans. The 
assessment of LA remodelling in MS includes LA size, EF, emptying 
fraction, PV flow patterns, LAA function, and LA deformation. From 
a clinical standpoint, LA compliance rather than the size is instrumen-
tal for mitigating pulmonary hypertension and increasing stroke vol-
ume downstream, whereby modulating symptoms in MS.132 LA 
reservoir function, quantified by longitudinal strain, reflects LA com-
pliance and is a function of pure MS in young subjects. Of note, con-
comitantly reduced LV compliance would affect LA compliance, LASr, 
conduit, and pump strain in the elderly75 which is typical for degenera-
tive MS with mitral annular calcification. LA dilatation and reduced 
LASr predict symptoms, hospitalizations, valve intervention, recur-
rence of functional tricuspid regurgitation after tricuspid valvuloplasty, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 8 Imaging markers of cardioembolic risk

TTE TOE CMR CCT

LA volumes LAA emptying velocity SEC in LA, LAA LA volumes LA volumes

LA strain Sludge/thrombus in LA or LAA LA fibrosis SEC in LA, LAA

SEC in LA LAA non-chicken wing morphology LA strain LA or LAA thrombus

Thrombus in LA PFO LA 4D flow LAA non-chicken wing morphology

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 7 Clinical characteristics of SEC, sludge, and thrombus56

SEC Sludge Thrombus

Prevalence

≈50% 1–14% 13%

Echocardiographic 

characteristics

Smoke-like echogenicity with variable density. Grade 1: 

minimal dynamic echogenicity in the LAA or sparely 

distributed in the LA; transient during cardiac cycle; Grade 
2, swirling pattern with similar distribution to Grade 1; 

Grade 3, constantly detectable dense swirling pattern in 

the LAA that spills into the LA with less dense intensity; 
Grade 4, very slow swirling dense smoke-like echoes in the 

LAA, extending with similar density into the LA. Full, 

opacification with contrast, no filing defect with colour 
Dopplera

Echo density with viscid gelatinous 

features but without a solid 

component. 
Opacification with swirling 

contrast, no filling defect with 

colour Dopplera

Echo dense mass with margins 

and motion distinct from the 

atrial wall. 
Filling defect with colour 

Dopplera, echo-free area with 

contrast

Thromboembolic risk ↑ ↑↑ ↑↑↑

aLow Nyquist limit, 25–35 cm/s.

The role of multi-modality imaging for the assessment of LA and LAA                                                                                                               399
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjcim
aging/article/26/3/385/7954288 by N

ew
 York U

niversity Libraries user on 13 April 2025



Figure 18 LA markers of cardiotoxicity.

Figure 19 Imaging algorithm for direct-current cardioversion.
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and AF and thromboembolic complications.133–140 Anticoagulation 
with vitamin K antagonists should be considered if LAVI exceeds 
60 mL/m2 in patients with rheumatic MS even in sinus rhythm 
according to the 2021 ESC/EACTS Guidelines for the management 
of valvular heart disease.123 Importantly, LASr and LA compliance 
were shown to improve following balloon mitral valvuloplasty, and 
this improvement translates into functional capacity.141,142 Similarly, 

LAA contraction was shown to improve after balloon mitral 
valvuloplasty.143

AF
Atrial contraction is abolished during AF. Atrial volume increases, while 
LA reservoir function decreases (Figure 16). LA remodelling and fibrosis 

Figure 20 LA function before, early after, and late after cardioversion. Note the regeneration of LA contraction (A, a′, LASct).

Figure 21 Demonstration of different parts of LA from a 3D volume-rendered reconstruction by contrast CCT performed for the assessment of 
PVs prior to PV isolation.
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contribute to the perpetuation of AF.144,145 Dilatation of the LA 
predicts the development of AF in the elderly and its predictive value 
is incremental to linear measurements.146 Likewise, LA enlargement 
predicts AF recurrence after radiofrequency ablation or cardiover-
sion.147 Total atrial conduction time which is the time interval from 
the onset of P wave to atrial contraction (tissue Doppler a′) has been 
considered as a marker of LA fibrosis and shown to predict AF recur-
rence in patients following rhythm control strategy.148

LASr is an early marker of altered structure and impaired func-
tion.149 In AF, measurements are averaged from five consecutive 
cycles. Only LASr can be computed during AF.24,25 LASr predicted 
AF development in patients at risk in the general population,150 in 
patients undergoing cardiac surgery, and in patients after a first 
stroke while in sinus rhythm.133,151,152 Hence, LASr has the poten-
tial to improve risk stratification for AF development and monitor-
ing strategies.153 From a prognostic standpoint, improvement in 
LASr is associated with a higher rate of sinus rhythm maintenance 
after cardioversion or ablation.154–156 Furthermore, an inverse 
relationship has been shown between LA strain and the extent 
of fibrosis measured by LGE CMR.157 Of note, for diagnostic and 
prognostic purposes, in other diseases such as HFpEF and MR, 
LA enlargement and LASr should be interpreted with caution in 
the presence of AF.

Several studies showed that larger amounts of epicardial fat were as-
sociated with an increased risk of AF.158 Moreover, Wong et al.159

showed a more robust association of AF with epicardial fat as com-
pared to abdominal or overall adiposity.

Thromboembolism
Visualization of thrombus
Thrombi can be found free-floating or attached to the LA wall, in- 
transit across the patent foramen ovale (PFO), on prosthetic materi-
als (valves, occluders), or in the LAA. LAA is the most common loca-
tion of thrombi (98%) in non-valvular AF because of stasis in the 
blinded pouch.160,161

TOE is the most frequently used tool to diagnose thrombus (sensi-
tivity 93–100% and specificity 99%) in the LAA.162 The use of ultra-
sound contrast agents improves the diagnostic accuracy of TOE for 
detecting thrombus (Figure 17).163 False-positive results are frequently 
due to the misdiagnosis of pectinate muscles as thrombi. Differential 
diagnosis also includes masses with a potential for embolization such 
as fibroelastomas, tumours, or vegetations. Contrast-enhanced CMR 
is the method of choice to make the differential diagnosis of intracardiac 
masses.164

Figure 23 Integration of pre-acquired CCT reconstruction with electro-anatomical map used to guide PV isolation. The circle tags indicate radio-
frequency energy delivery sites at the PV ostia. LSPV, left superior PV; LIPV, left inferior PV; RSPV, right superior PV; RIPV, right inferior PV.

Figure 22 Electro-anatomical colour-coded voltage map (violet 
voltage >0.5 mV). (A) Normal voltage of the posterior wall. (B) Low- 
voltage areas and scar (grey colour) in native atrial cardiopathy.

Figure 24  Trans-septal access with 3D ICE catheter using 2D X- 
plane imaging. A) the inter-atrial septum (IAS) is imaged in the superior 
and inferior orientation with the ICE catheter tip retroflexed. B) X- 
plane showing the anterior (Ao) and posterior. SVC- Superior vena 
cava; IVC = Inferior Vena Cava.
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Figure 25 Surgically ligated LAA. A,B) surgically ligated LAA with no residual leak, C) subsequent tissue ingrowth and thrombus formation inside the 
ligated LAA, D) suture line, E) thrombus inside an incompletely ligated LAA, F) the residual LAA to LA communication.

Figure 26 LAA closure devices correctly deployed seen by 2D saggital and 3D en face views.
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CCT and CMR with dedicated protocols that ensure full replenish-
ment of the LAA by contrast (see CMR and CCT) are also highly diagnos-
tic (99%) for detecting LAA thrombus (Figure 12).53,165–168 However, 
CCT and CMR are less well studied for detecting circulatory stasis within 
the LAA.166,168

Cardioembolic risk assessment
Imaging provides comprehensive information about thromboembolic 
risk: mitral valve prostheses, PFO, atrial septal defect (ASD), LA dilata-
tion, loss of LA contraction, thrombus, and spontaneous echocardio-
graphic contrast (SEC) are risk factors that are detected by imaging, 
for cardioembolic events. SEC is a marker of stagnation associated 
with low flow velocities in the LAA (<20 cm/s) and a precursor of 
thrombus.169 The presence of dense SEC is a strong risk factor for 
thromboembolic events.170–172 In terms of severity, SEC is graded 
semi-quantitatively173 (Table 7). On the other hand, sludge gives the im-
pression of impending thrombus and is associated with thromboembol-
ism and all-cause mortality.174 Following cardioversion, LAA and LA 
mechanical contractile dysfunction or ‘stunning’ develops in 38–80% 
of cases, with the formation of SEC.175 Importantly, SEC does not dis-
appear with anticoagulation.

The size of LAA (>34 cm3), the number of lobes ≥3, a large 8non- 
chicken wing (cauliflower in particular) morphology, and low-velocity 
flow are considered risk factors for thrombus formation.176–178 The 
risk of thrombus development in the LAA increases with velocities 
≤55 cm/s.176,177 Emptying velocity <20 cm/s is specifically associated 
with LAA thrombus formation.32 The ratio of LVEF/LAVI <1.5 showed 
100% sensitivity for predicting the presence of LAA thrombus in pa-
tients with non-valvular AF.179,180

AF associated with MS, HCM, CA, or CHA2DS2-VA score >1 is an 
indication of anticoagulation181 (vitamin K antagonists for moderate- 
to-severe MS). However, the temporal dissociation between the 
AF episodes and embolic stroke,182,183 rhythm control strategies 
that failed to reduce the risk of stroke, suggested the possible impact 
of LA cardiopathy and metabolic factors to thrombogenic sub-
strate.184 Furthermore, LA dilatation185,186 reduced deform-
ation,187–189 fibrosis,190,191 and other atrial cardiopathy markers 
were shown to be associated with cardioembolic risk regardless of 
AF.192–194 LA fibrosis and LA strain were also shown to provide in-
cremental risk prediction over CHA2DS2-VASc score and LA vol-
ume.187,195 The extent of LA fibrosis on LGE CMR was associated 
with LAA thrombus, stroke, and incident AF.196,197 Likewise, pa-
tients with reduced LA strain had a higher incidence of LAA dysfunc-
tion and LAA thrombus in non-valvular AF.198 Ongoing studies are 
further exploring the relationship between atrial fibrosis and stroke 
(NCT03830983).199 Various markers of cardioembolic risk can be 
obtained from different imaging modalities (Table 8).

Chemotherapy-related cardiotoxicity
This section mainly focuses on the most commonly encountered anthracy-
cline and trastuzumab toxicity. LA dilation was reported as an indicator of 
cardiotoxicity.200–205 Alterations in LA function without changes in vol-
ume,206–209 reduced passive emptying with increased active emptying,205,206

and reduced LA emptying fraction by 3DE210 and CMR202 have been re-
ported. Also, reduced LASr and conduit strain,206–208 decreased LA con-
tractile strain, and prolonged mechanical dispersion have been noted 

Advice table 5 Multi-modality imaging of LA and LAA for 
disease-oriented purposes

Heart failure

Assessment of LASr is advised as an adjunct to EACVI/ASE 

criteria of DD.70,73

Both LASr and LAVI quantification is advised whenever HFpEF is 

suspected or established.
Quantification of LASr and LAVI is advised as part of the 

assessment of functional and structural cardiac abnormality 
(previously designated as Stage B HF).

Ischaemic heart disease

Assessment of LAVI and LASr may be appropriate for risk 

stratification in acute and chronic ischaemic heart disease 
independently of LV ejection fraction.

Athlete’s heart

It is advised to assess LA enlargement as an adaptative 

mechanism in athletes.
LA size or strain is not suitable for differentiating adaptive from 

pathological remodelling in athletes.
Hypertrophic cardiomyopathy

Assessment of LA cardiopathy (dilatation, dysfunction, and 

fibrosis) is integral to the evaluation of HCM as an adjunct to 

diagnosis and prognostication.

Figure 27  LAA Sizing by 2D TOE at 4 angles, 45 degrees apart (0, 
45, 90 and 135°).
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(Figure 18).211 LA function parameters are sensitive markers and usually 
precede LA volume increase. They correlate with LV DD and AF gener-
ation. Of note, Ibrutinib-related AF is a well-known cardiotoxic complica-
tion for which LASr was found as an important predictor.212,213 Cut-offs 
for LA cardiotoxicity are not standardized, with studies using absolute 
LASr <35% or <10th percentile, ≥10–15% reduction from baseline or 
comparison to controls. Yet, the prognostic utility of LASr in predicting 
cardiotoxicity remains debatable.214,215

Peri-procedural imaging of LA and 
LAA for outcome optimization
Cardioversion
The Assessment of Cardioversion Using TOE (ACUTE) multi-centre 
trial was the first randomized prospective study that introduced 
TOE-guided cardioversion into clinical practice.217,218 Today, the 
TOE-guided approach is the common strategy when there is a sub- 
therapeutic or interrupted anticoagulation over the last 3 weeks to ex-
pedite cardioversion181,219–222 (Figure 19). Atrial stunning is maximum 

immediately after cardioversion and improves typically over 4 weeks 
(Figure 20).223 It is important not to stop the anticoagulation during at-
rial stunning. Of note, full recovery of mechanical function may extend 
beyond 3 months in almost 50% of the patients, depending on the dur-
ation of AF, atrial size, and structural heart disease.224

Peri-AF ablation
Depending on experience and resources, CCT and ICE are used in clin-
ical practice for visualizing LA/LAA thrombus before catheter ablation as 
alternatives to TOE. The following groups are considered high risk for 
thromboembolic complications: (i) patients with CHA2DS2-VA >1 but 
have not received therapeutic anticoagulation during the last 3 weeks; 
(ii) patients having CA, HCM, and rheumatic moderate-to-severe MS, 
despite therapeutic anticoagulation within the last 3 weeks; and (3) pa-
tients with a history of thrombus despite therapeutic anticoagula-
tion.181,225 Imaging should be close in time to the procedure, ideally 
within 48 h. The anatomic modelling of PVs before AF ablation may im-
pact the ablation approach and can be accurately performed by CCT or 
CMR with contrast.216,225,226 Of note, there is less data with CMR for PV 
modelling. Therefore, CCT is more frequently used than CMR for clinical 
practice (Figure 21). Imaging for PV stenosis post-ablation is only required 
if patients are symptomatic.225

Electroanatomic mapping (EAM) systems serve to obtain real-time 
anatomical information from the LA, LAA, and PVs and identify low- 
voltage areas that may be additional targets for AF ablation beyond 
PV isolation (Figure 22).227,228 Preprocedural CCT images loaded and 
merged with the real-time mapping system can facilitate anatomic re-
construction, pre-acquired delayed enhancement CMR sequences 
may assist with the identification of scar extent and location39,228–230

(Figure 23). Although integration of pre-acquired CCT or CMR images 
was thought to decrease the fluoroscopy duration, previous rando-
mized studies and a new meta-analysis demonstrated that integration 
of pre-acquired CCT or CMR images does not improve outcomes 
from AF ablation.216,225,226,231

Although among patients with AF undergoing catheter ablation, fi-
brosis estimated by delayed enhancement was found to be associated 
with the likelihood of recurrent arrhythmia in the Determinant of 
Successful Radiofrequency Catheter Ablation of Atrial Fibrillation 
(DECAAF) study,232 the DECAAF-2 study did not demonstrate the 
benefit of adding CMR-guided fibrosis ablation to PV isolation for pre-
venting atrial arrhythmia recurrence.39 CMR may allow visualization of 
completeness of post-ablation lesions which is relevant for the recur-
rence of AF.233,234

CCT is the preferred imaging modality to assess PV stenosis after PV 
isolation.235

Lately, ICE has become a useful guide for AF ablation procedures. 
ICE enables visualization of PV ostia, the position of catheters and 
guides trans-septal puncture, thereby increasing the safety of the pro-
cedure (Figure 24).236–238

Imaging is key to diagnosing complications of the procedures. 
Pericardial effusion is the most common complication of AF abla-
tion (0.4–1.3%).225 Echocardiography should be readily available 
to make the diagnosis. Echocardiography is also the first step for as-
sessing when valvular damage is suspected. Thrombotic complica-
tions and PV stenosis are diagnosed with CCT or CMR with 
contrast while atrio-oesophageal fistula is best diagnosed by chest 
CT with contrast.216,239,240 Further work-up for the management 
of complications is described in the European Heart Rhythm 
Association (EHRA)/EACVI document on cardiac imaging in 
electrophysiology.216

LAA closure
It is advised to exclude LAA thrombus before percutaneous LAA clos-
ure in every patient. Surgical exclusion requires less guidance with 

Cardiac amyloidosis

Assessment of LA cardiopathy (dilatation, dysfunction, and 

fibrosis) is advised for the diagnosis and prognostication  

of CA
Identification of atrial electromechanical dissociation is a distinct 

clinical phenotype indicating poor prognosis in CA
Mitral regurgitation

In primary MR, it is appropriate to evaluate LA size for making 

decision about mitral valve intervention.
It is appropriate to evaluate LA dilatation, annular dilatation, and 

altered annular contraction for the diagnosis of atrial 

functional MR.
Mitral stenosis

Quantification of LA function and remodelling complements the 
haemodynamic assessment of MS and prognostication.

Atrial fibrillation

Assessment of LAVI and LASr is advised to improve prediction of 

the risk of AF development, persistence, and recurrence 
during sinus rhythm in subjects with CHA2DS2-VA score >1 

(excluding gender), moderate-to-severe rheumatic MS, HCM, 

and CA.
Cut-offs for abnormal LA size and function are not valid in the 

presence of AF for diagnostic and prognostic purposes.
Thromboembolism

The use of ultrasound contrast agents is advised to increase 
the accuracy of TOE as needed to rule out cardiac thrombus.

TOE and delayed contrast imaging with CCT or CMR with 

inversion time myocardial delayed enhancement are 
appropriate to rule out LA/LAA thrombus.181,216

Assessment of LA cardiopathy by volume, strain, and 
LAA dysfunction is advised as risk modifiers during sinus 

rhythm.
Anticoagulation within the therapeutic range should not be 

interrupted before TOE.
LA cardiopathy alone is not considered a valid argument for 

anticoagulation.
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imaging, but post-surgical evaluation is important because it may be in-
complete and may paradoxically increase the risk of thromboembol-
ism241 (Figure 25A–F ). Various transcatheter closure devices are in 
use with specific appearances (Figure 26).242–244 Measurements for de-
vice sizing are performed either by TOE or CCT. Device sizing aims to 
determine the maximum landing zone diameter at the level of the left 
circumflex artery (Figure 27). Sizing by CCT offers higher spatial reso-
lution and tends to be 2–3 mm larger than TOE.245 CCT can also be 

useful for selecting trans-septal puncture site.246 Intraprocedural guid-
ance utilizes a combination of fluoroscopy with either TOE or ICE. The 
goal is to achieve a complete occlusion of the LAA orifice without peri- 
device leak (PDL). The size of a PDL is measured at its narrowest diam-
eter (vena contracta) by colour Doppler using a Nyquist limit of ∼35 cm/ 
s. Recent studies have shown that irrespective of the size, patients with 
PDLs have a higher incidence of thromboembolic complications com-
pared with those without PDL.247,248 A device surveillance at 45–90 

Figure 28 A) Peri-device leak by color Doppler (arrows), B) Thrombus on the occluder (arrows).

Figure 29 Imaging the LAA with the AcuNav 3D ICE catheter in the LA. (A, B) Long-axis orientations equivalent to 45 and 135° TOE views, respect-
ively. (C ) Short-axis view of the LAA ostia. These 2D multiplanar reconstructions are generated from the volume data shown in D. (E) Measurements of 
the ostial size in the four standard orientations of conventional TOE guidance. (F ) Additional measurements obtained from E. (G) Depth of LAA (dotted 
line).
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days by TOE is advised to verify device stability, erosion, and complete 
occlusion without PDL and to rule out thrombus that is associated with 
unfavourable outcomes245 (Figure 28). Patients with PDLs may either 
require anticoagulation or undergo additional transcatheter closure 
procedures.

ICE is frequently used during LAA device closure.249 LAA views are 
optimally obtained when the ICE catheter is positioned in the right ven-
tricle or the pulmonary artery. However, invasive nature and high costs 
of the technique limit its use (Figure 29).

Future perspectives
Developments in molecular imaging are promising to explore the in-
flammation and fibrotic process associated with atrial cardiopathy. 
Computational fluid dynamics simulations enable comprehensive blood 
flow pattern analysis in the LA, LAA, and PVs helping to explore the 
thrombogenic milieu.250 Nevertheless, some simple but important 
gaps in evidence restrict the widespread clinical use of imaging for 
the assessment of LA cardiopathy. LA cardiopathy for risk stratification 
in patients having severe aortic stenosis,251 the impact of assessing LA 
remodelling on outcomes, diagnostic and prognostic cut-offs of LA re-
modelling specific to diseases, and imaging modalities are awaited.

Conclusions
Consistent evidence and uniform expert consensus favour assessing 
LA cardiopathy and LAA by multi-modality imaging as an indispens-
able adjunct to patient management. The major gaps in evidence 
include the demonstration of the game-changing impact of multi- 
modality imaging for improving the outcomes. Further evidence 

from randomized studies is awaited to integrate multi-modality im-
aging of LA and LAA into clinical decision-making algorithms of the 
guidelines for patient management.
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Advice table 6 Peri-procedural use of multi-modality imaging

Cardioversion

Imaging to rule out cardiac thrombus before cardioversion is 
advised in indications defined by the 2024 ESC guidelines for 

the management of AFa.181

Transcatheter and surgical procedures

Cardiac imaging prior to AF ablation in high-risk patients may be 

useful (see text).
Guidance with TOE or ICE is advised for transcatheter LAA 

occlusion.
CCT is the preferred modality for assessing PV patterns before 

AF ablation and PV stenosis post-ablation, in symptomatic 

patients.
Guidance with ICE increases the safety and decreases the 

duration of AF ablation.237,238

Echocardiography should be readily available in the catheter 

laboratory.
Chest CT with contrast is advised when there is suspicion of 

atrio-oesophageal fistula after AF ablation.
The utility of assessing LA wall fibrosis with CMR before and 

after AF ablation is uncertain.
TOE should be avoided if there is suspicion of atrio-oesophageal 

fistula.

a(i) To expedite cardioversion in non-anticoagulated subjects with AF ≥24 h and 
CHA2DS2-VA >1, (ii) if anticoagulation has been suboptimal within the last 3 weeks 
without interruption, and (iii) after 4 weeks of anticoagulation if a thrombus was 
initially detected.
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